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Interest in questions of precritical crack growth in metals operating in the high tem- 
perature region (T = (0.4-0.6)T m) has increased in recent decades. These questions are of 
important practical value for energy machine construction in connection with the possibility 
of predicting the time of operability of structure elements in which a crack has been de- 
tected whose length is considerably less than critical. A large number of experimental 
studies has been performed devoted to a study of the growth kinetics for such cracks, clari- 
fication of the parameters adequately describing the process of their growth. A number of 
models has been proposed for a theoretical description of the growth process. These papers 

are covered sufficiently and completely in [1-4]. The absolutemajority of authors of the theor- 
etical papers use a damage parameter or another parameter, whose attainment of the critical 
value defines the time of rupture under creep conditions, for modelling crack growth. The 
condition of attainment by this parameter of its critical value at the crack apex or at a 
certain characteristic distance away [6] is taken as the criterion of crack growth [5]. The 
stress distribution at the crack apex in these papers corresponded to a constant or smoothly 
varying external load. The problem of crack growth under an abruptly changing load, in par- 
ticular for a step change in the load that is characteristic for fatigue tests of structures, 

is examined in this paper. 

i. Let us consider the problem of growth of a crack under creep conditions. The govern- 
ing relationships for such a body with instantaneous elastic deformations taken into account 

are taken in the form 

�9 " " ~ . . . . .  6 i j - ~  s~j r 3 B ~ - I  (i.i) 

Here u i are displacement vector components, ~.., sij = d.. -- (i/3)~ 6-' and s.. are compo- 13 13 mm 15 15 . 
n e n t s ,  o f  t h e  s t r e s s  t e n s o r ,  t h e  s t r e s s  t e n s o r  d e v i a t o r ,  and  t h e  s t r a i n  t e n s o r ,  Oe = ( ( 3 / 2 ) s i j "  
s i j 3 ~ / 2 i s  t h e  s t r e s s  i n t e n s i t y ,  G and  K a r e  t h e  s h e a r  m o d u l u s  and  t h e  v o l u m e  e x p a n s i o n  modu- -  
l u s ,  B, n a r e  c r e e p  p o w e r - l a w  p a r a m e t e r s  ~ = Bd n ,  t h e  comma d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e -  
s p e c t  t o  t h e  c o r r e s p o n d i n g  c o o r d i n a t e ,  t h e  d o t  d e n o t e s  t h e  d e r i v a t i v e  w i t h  r e s p e c t  t o  t i m e ,  
the subscripts take on the values I, 2, and 3 summation is over repeated subscripts. To de- 
scribe the process of rupture that occurs in the body during creep, we use the damage param- 

eter ~ with its kinetic equation [7] 

(1.2) 
\ t  - -  ~] 

From (1.2) with the rupture criterion ~(tp) --- which will be satisfied at the apex of a moving 
crack in this case and has the form w(l(t), t) I= i, we obtain an integral equation for the 

desired dependence l(t) [5] 

A (,n + l) ~ %,ax (Z (t), ~) d~ t. ( 1 . 3 )  
0 

To solve (1.3), the stress distribution must be known in the body with the moving crack. 

If the stresses at the crack apex are sought in the form dij(r, %, t) = rlfij(%, t), 
then there results from (i.i) that the creep strain rate predominates over the elastic strain 
rate 6i~ = (Omm/9K) 6ij + (sij/2G) as r + 0, and these components can be neglected in compari- 
son wit~ (3/2)Bo~-Isij. But for the power law ~ij = (3/2)B~ the singularity index is 

= --i/(n + i), therefore, the Hutchinson-Reiss-Rosengren asympototic [8, 9] can be written 

for ~ij(r, %, t): i 

6ij (r, O, t) = k BI~zr ] ~~) (0). ( 1 . 4 )  
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Here C(t) is expressed analogously to the J-integral in terms of a contour integral over the 

contour FE, that shrinks to the crack apex: 

{___2_ ~ ,~,~+~ C(t) =-- lira ~n + 1 ~ e  cos 0 --  (s~/~j ui, 1 ds = ~ B ~  +* cos 0 --  %jnju~, 1 ds v- lira o.i jei j , ldg.  ( 1 . 5 )  
8-->0 i F' / 8->0 
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The second component in the representation C(t) in terms of a contour integral over the arbi- 
teary contour g vanishes in the steady-state creep state (6ij = 0) while C(t) in this case 
is none other than the C*-integral of steady-state creep independent of the contour of inte- 
gration and determined completely by the external conditions of the problem (the size of the 
body and the crack, the external load). 

Taking account of (1.4), the solution (1.3) is easily found and has the form [5] 

(c(t) ~ 
"t(t) .... A ( m + l ]  sinaakBfn] ( l - - l o ) l - ~  , (1.6) 

where ~ = m/(n + I) < i; ~o is the initial len~t of the crack. Therefore, if the quantity 
C(t) is known, then the desired dependence 7(t) can be found from (1.6). 

2. Upon a sudden loading at the time t = 0 an instantaneous elastic state occurs in the 
body with stresses whose asymptotic at the apex has the form 

k I 
% (~, o, t = o) - V ' T ~  ~ )  (o). ( 2 . 1 )  

Under constant (t > 0) external loads a stress redistribution occurs from the instantaneous 
elastic state (2.1) to the steady creep state 

1 

o~j (,, o, t ~ )  = ~ ~ -<~- /  o{~)(o), ( 2 . 2 )  

the s t e . In the transition period prior to the onset of the steady creep state 
the stress distribution at the crack apex has the asymptotic (1.4). The expression C(t) = 

(I -- v=)K~/((n+l)Et), that follows from an analysis of the dimensions of the quantities de- 
fining C(t) in (1.5) is obtained for the quantity C(t) in [i0]. The build-up time for the 
stationary state t T is found from condition (2.2) C(t T) = C*, i.e., t T = (t--~2)K~/((n + i)" 
EC*). Therefore, in this case the following expression can be used for C(t) 

C(t) = C* I tTlt'O < ~ < tv, 
( I, t >t tv, 

whose validity is verified in a finite-element solution of the problem [ii]. 
of (2.3), Eq. (1.6) can be rewritten as 

I(tT/t)=, O < t < tv, l(t) c'r[ I, t > ~ t  T, ( 2 . 4 )  

w h e r e  ~cT = A ( m @  1) ( l l o ) l - e  i s  t h e  c r a c k  g r o w t h  r a t e  i n  t h e  s t e a d y  c r e e p  s t a t e .  The  d e -  

p e n d e n c e  ~ (C*)  i s  d i s p l a y e d  i n  t h e  f i g u r e ,  w h e r e  t h e  d e p e n d e n c e  ~CT(C*)  i s  shown  b y  d a s h e s  

tg~ 

/ 
! ti' l 

C O C T ;g 

(2.3) 

Taking account 

Fig. i 
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for t < tT, i.e., ~(C*) without takin Z into account the stress distribution from the instantan- 

eous elastic state to the steady creep state, C~ and C} correspond to values of C* for t = 0 and 

t = t T . 

The power-law dependence ~(C*) has been observed in a large number of experiments [1-4]. 
The influence of the stress redistribution in the transient stage (descending branch of the 
curve ~(C*), whose existence is noted in [4]) and the running length of the crack 7(t) on the 
dependence ~(t) is insignificant and can be estimated as follows. We represent C* in the form 
C* = B~n+~Zc(7/w, n) where ~ is the stress applied to the specimen, w is the specimen width, 
c(n, ~/w) is a dimensionless function of n and I/w whose value is obtained in [12-14] for a 
number of specimens and certain values of n and ~/w. We estimate C~/C~ ~ ~T/~O (7 T is the 

c(n, lo/w)( ~ t~/tp) 1/~ crack length for t = tT). Integrating (2.4], we find that IT/l o~i~ in (1--~)sinaa 

(tP:[ A(m@1) o:]-1 is the time to rupture of a specimen with mean stress ~ therein). For many 
materials tT/t p << 1 (thus, for certain steels tT/t p = 0.01-0.05 [15]) consequently, the de- 
scending branch on the dependence Z(C*) is quite often not observed experimentally. The iNflu- 
ence of Z on ~ also vanishes quite rapidly since (~ -- ~o) ~-~ = ((7 -- ~o)/(W--7o))~-~(w -- ~o) ~-~ 

while the quantity (l--/ol 1-~ for all ~, with the exception of 7 ~ 7o, because 1 -- ~ = 
~-~o7 

n + I - - m  t 
n+l ~-~-]~i Therefore, for ~ under a constant load the following simpler dependence 

can be used. 

i:A(,n+l) s i ~ ( ~  ) ( ~ - - l o ) ~ - ~ ,  (2.5) 

which is valid for almost all 7, except 7 ~ 7o. 

3. Let us consider cyclic loading of a body when the load appl%ed to it varies as fol- 
lowso(1)~a{2)~a~)~... We denote the intervals of operation of ~i) and ~(2) by.tl and t2 
and we consider uj 2) > ~i) > 0. At the loading (o!~) § ~! )) or unloading (ol ~) + a! I)) 
times, the stresses at the crack aoex change instantaneously by the quantity Aoij : 

AK I 
• as follows from the defining relationships (i.i) written for the stress incre- 

ments A~ij and the strain increments Asij for an instantaneous change in the external load. 
The plus and minus signs correspond to loading and unloading, AKI=(o~)--oZ ))~k(I/w),k(I/w) , 
is a dimensionless function of 7/w. The total stresses at the time T of the change in the 
external load have the form 

i 

- -  AKI e [O(T)]n+l=(c)[O, =3() 
% (,, 0, r) = [B-~r) o~,, + (0). (3.1) 

-- V 2 ~ r  u 

It follows from (3.1) that as r + 0 the first component can be neglected, i.e., the quantity 
Aoij completely determines the stress state at the crack apex at the time of a change in the 
external load. For t > T redistribution starts for the stresses Aoij, defining the stress 
state at the crack apex analogous to (1.4): 

1 

A% ( , ,  0, t) = i (~ + ~ ~< (n--- r) r ~j) (0) 

The total stress at the crack apex is again determined by (1.4) in which C(t) already depends 
on C(T) and on • -- v2)AK~/((n + l)E(t -- T)). We approximate the expression for C(t) in the 

form 

C(t):O(T)• ), (3.2) 

by taking into account that as t § T the increment AC = C(t) -- C(T) is determined completely 
by the quantity • + l)E(t -- T)). 

Let the intervals t~ and t2 be sufficiently large so that a new stationary state char- 
acterized by the quantities C~ and 2 builds up at the crack avex during this time after a 
load change. Then according to (3.2), the stress redistribution time to the new stationary 
state C~ can be eliminated for the loading (o! ~) § o~ 2), C(T) = C?) as 

446 



(~ - r  AK~ ~ (1 - -  ~ )  k ~ A _ (~ - -  m ~ 
~ = ( , ~ , ~ ) E ( c { - - c ~ ' ) -  ~ + ~  ~ ~(~_R,~+I) (3.3) 

D u r i n g  u n l o a d i n g  ( g ( 2 )  + ~ z ) ,  C(T) : C~') i n  t h e  t i m e  

(I -- R) 2 (3 .4)  
"%-- (n+I) EC~-- n + t  c P 

. t .  

the stresses are negative, then they reach their new stationary state corresponding to C~ 
durin~ the time TT.: The a~(~)/o! 2) = R in (3.3) and (3.4) is the cycle asymmetry factor, 

. Yi)~ _ ~i~(2)~n .... ~ ma~nqtudes of the instantaneous elastic strain and 
(2) It follows from the creep strain rate in uniaxial tests under the action of stress c~ 

(3.3) and (3.4) that TS/T T = (i -- R n+1) -~ 1 for R <~ 0.5-0.7 and n >/ 3, i.e., in this case 
it can be considered that the stresses are negative durin~ the time KT, after which a new 
stationary state sets in, characterized by the quantity C~'. The ratios TT/t~ , ~.T/t2 are 
quantities on the order of ei/piti, which for sufficiently large t2 are sma]l in metals 
with developed creep strain, i.e., the stress redistribution can be neglected in this case, 
and it can be considered that C(t) C* = 2 or C(t) = C~ almost at once after the loading or 

unloading time. 

For small t~ and t2 (t~ -- ti), we obtain from (3.2) that the m~antity C(t) is negative 
during the whole interval tz for unloading, and C(t) -- (i -- ~2)AK~/((n + l)E(t -- T)) for 
loading, sinceC(T) is determined by the value of C(t) at the end of the unloading interval, 
i.e., C(T) ~< 0. If t2 is large while tl is small, then for loading C(t) -- C~ while for un- 
loading the quantity C(t) will be negative during the whole interval t~. A quantitative 
measure of whether t~ and t2 are large or small is the ratios ~T/t~ and zT/t T (or Zs/t~ and 
~s/t2 for ~s/TT -- I). For ~T/t~ >> i and ~T/tz >> i the quantities tz and t2 are small, 
while for ZT/t~ << 1 and zT/t~ << 1 they are large. 

Taking into account all the above on the behavior of the quantity C(t) in the different 
cyclic loading cases, it can be concluded that for TT/t~ << 1 and VT/t ~ << 1 the rate of 
crack growth ~ is determined by (2.5), where C* = C~ for loading and C ~" = C~ for unloading. 

The increment in the crack length per cycle A~ will be A/--~A(m -~I) ~ (C*lC~(.:--lo)~--~t. ~ 

the case ( sinoq:~ \~/ (~- l~ ti'i" e. , is determined only 

by the quantity C~ for the loading case. For ~T/t~ >> 1 and zT/t~ << 1 the stresses during 
unloading will be negative, i.e., ~ = 0 and ~ = 0 during the whole unloading interval. There- 
fore the increment in the crack length per cycle is 

sin~9:\Bin ] -- lo)1-~ t2" 

The case ~T/t~ >> i and ~T/t2 >> 1 (fatigue crack growth at high temperature) is of special 
interest. The stresses during unloading are again negagive, i.e., 7 = 0~ while for the load- 
ing interval the quantity C(t) in (2.4) can be considered equal to C(t) --(l--vi)&K~/((n+l). 
E(t--T)). The increment in crack length per cycle 

m =  A (,,~+ ~) ~ \ (,7_4__U ~B~l]~q ] (~ - ~o) ~-~ ~ _ 

can be taken as an estimate of the rate of fatigue crack growth at high temperature d~/dn, 
i.e., 

dl ~A(m-}- l )  n { ( l - - v  2) AK~ ~ t~ 
~,n - ~- ~ \ C~ ~) ~-~,A] (~ -~~ ~ - ~ (3.5) 

It follows from (3.5) that the crack growth rate is determined completely by the quantity AKz 
in this case. 

The fact of crack shutdown at a certain time during partial removal of the load is es- 
tablished experimentally in [16]. It is shown there that for large times tz and t2 the rate 
of crack growth I is determined by the running quantity C*. It is shown in [17] thai: for a 
cyclic change in the load with a small holding time in the cycle tl and ti, tl = ti, dl/dn 
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2~ 
is determined by the quantity AK I , while for short-time unloading (tl/t2 << i) and large 
holding time t2 during loading by the quantity C* as in the case of a constant load. 

Therefore, utilization of the damage parameter in bodies with a crack under creep con- 
ditions permits prediction of their growth process for both constant and variable loads. 
Partial removal of the load results in a temporary stop of the crack. The half time T s de- 
pends on the geometry of the body with the crack (the ratio k2/c) the loading conditions (the 
cycle asymmetry factor), and the mechanical properties of the material (the ratio e2/p2). 
The quantities TT/t~ and TT/t2 that show whether an instantaneous change in the stress in- 
fluences the crack growth process play an important role. It can be judged from TT/tl and 
TT/t2 which parameter (C* or AK I) governs the crack growth process during cyclic loading. 
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